En la imagen, parte del grupo de investigación de la UGR que ha llevado a cabo este avance científico.
M. VALVERDE
Científicos de la Universidad de Granada (UGR) han logrado 'resucitar' proteínas "fósiles" que existieron hace miles de millones de años y las han introducido en una bacteria actual, concretamente la Escherichiacoli (E. coli), comprobando que dichas proteínas la protegen frente a infecciones víricas. Este avance científico, que ayer publicó la prestigiosa revista Cell Reports, "puede tener importantes aplicaciones en el ámbito de la bioingeniería de plantas, ya que podría utilizarse para manipular las especies genéticamente y hacerlas resistentes a los virus que pueden causar efectos devastadores en cosechas, algo que sería de enorme utilidad sobre todo en países en los que la subsistencia depende de un cultivo concreto, como el arroz, el trigo, la yuca o el plátano, y una enfermedad viral en ellos puede tener consecuencias desastrosas para la población".
Los investigadores de la UGR han llevado a cabo en este artículo una 'prueba de concepto', demostrando así que es posible reconstruir mediante ingeniería genética una proteína antigua que supone una forma ancestral de la tiorredoxina y que, al usar la proteína modificada, la bacteria E. coli no puede ser infectada por el virus bacteriófago T7. "Se trata de una carrera armamentística en la evolución en toda regla", explica el investigador principal de este trabajo, José Manuel Sánchez Ruiz, catedrático del departamento de Química Física de la Universidad de Granada. "A lo largo de miles de millones de años, la tiorredoxina ha estado evolucionando continuamente para evitar ser secuestrada por el virus, y el virus, a su vez, ha estado evolucionando para secuestrar la proteína. Lo que nosotros hemos hecho ahora es estropear y desmontar toda la estrategia del virus, al utilizar una proteína fósil en lugar de la actual".
El laboratorio de Sánchez Ruiz en la UGR está especializado en la reconstrucción de secuencias de genes antiguos que codifican proteínas. Para ello, los investigadores reconstruyen proteínas antiguas a partir de los datos genéticos de muchos taxones (grupo de organismos emparentados) diferentes. "El proceso de reconstrucción de una proteína fósil es comparable al de una lengua extinta: si tenemos en cuenta cómo han evolucionado las palabras, podemos determinar cómo eran originalmente. La reconstrucción de secuencias ancestrales es similar y, para llevarla a cabo, necesitamos muchas secuencias de proteínas actuales, lo cual no presenta problema en la llamada era genómica", afirma Sánchez.
En este contexto, la tiorredoxina es una de las proteínas más útiles para los investigadores para ser reconstruida en el laboratorio, "porque existe prácticamente desde el origen de la vida y está presente en todos los organismos modernos. El ser humano no puede vivir sin ella, ni tampoco E. coli", apunta el investigador de la UGR.
La tiorredoxina es, además, una de las proteínas que el bacteriófago debe reclutar para sobrevivir y replicar. "Sin secuestrar una tiorredoxina, el virus llega a un callejón sin salida". En una serie de experimentos llevados a cabo por Asunción Delgado, entonces investigadora post-doctoral en la Universidad de Granada, los investigadores probaron siete reconstrucciones de tiorredoxinas primordiales, con edades comprendidas entre 1.500 millones de años y 4.000 millones de años, para ver si podían funcionar en E. coli moderna.
Los investigadores de la UGR advierten que la 'resurrección' de proteínas antiguas puede ser algo más que una curiosidad científica, y tener una enorme utilidad.
No hay comentarios:
Publicar un comentario